Expression of TWEAK/Fn14 axis in the context of metabolic dysfunction associated-fatty liver disease: an approach in liver regeneration
DOI:
https://doi.org/10.47892/rgp.2024.443.1718Palabras clave:
Fatty liver, TWEAK receptor, Fn14 receptor, Liver regenerationResumen
Background: One of the pathways involved in liver regeneration processes is TWEAK/Fn14 (tumor necrosis factor-related weak inducer of apoptosis/fibroblast growth factor-inducible 14), which has been proposed to act directly and selectively on hepatic progenitor cells; however, its role in the regeneration of steatotic liver metabolic dysfunction associated fatty liver disease has not been fully elucidated. Objective: To evaluate the behavior of Fn14 and its ligand TWEAK, as well as cellular stress signals as biochemical cues for possible liver regeneration in MAFLD. Materials and methods: A prospective study was carried out where the behavior of Fn14 and its ligand TWEAK, as well as cellular stress signals were observed as biochemical indications of a possible liver regeneration in a condition of tissue damage caused by excessive lipid accumulation. The expression of TWEAK, Fn14 and heat shock proteins in hepatic steatosis of non-alcoholic origin was assessed using immunohistochemistry and western blotting. Results: The histological classification of the tissues under study corresponded to microvesicular steatosis. We report a high level of expression of heat shock proteins in the cytoplasm. The expression of TWEAK and Fn14 in liver tissue affected by lipid accumulation was localized in the cytoplasm of hepatocytes, showing a higher intensity of reactivity for Fn14 compared to its ligand TWEAK. Conclusion: The expression of TWEAK/Fn14 axis was positive suggesting reactivity of the signaling pathway in metabolic dysfunction associated fatty liver disease.
Descargas
Métricas
Citas
Zhang Y, Zeng W, Xia Y. TWEAK/Fn14 axis is an important player in fibrosis. J Cell Physiolgy. 2021;236(5):3304-16. doi: 10.1002/jcp.30089.
Dwyer BJ, Jarman EJ, Gogoi-Tiwari J, Ferreira-Gonzalez S, Boulter L, Guest RV, et al. TWEAK/Fn14 signalling promotes cholangiocarcinoma niche formation and progression. J Hepatol. 2021;74(4):860-72. doi: 10.1016/j.jhep.2020.11.018.
Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol. 2021;18(1):45-56. doi: 10.1038/s41423-020-00558-8.
So J, Kim A, Lee S-H, Shin D. Liver progenitor cell-driven liver regeneration. Exp Mol Med. 2020;52(8):1230-8. doi: 10.1038/s12276-020-0483-0.
Tirnitz-Parker JE, Viebahn CS, Jakubowski A, Klopcic B, Olynyk J, Yeoh G, et al. Tumor necrosis factor–like weak inducer of apoptosis is a mitogen for liver progenitor cells. Hepatology. 2010;52(1):291-302. doi: 10.1002/hep.23663.
Karaca G, Swiderska-Syn M, Xie G, Syn W, Krüger L, Machado M, et al. TWEAK/Fn14 signaling is required for liver regeneration after partial hepatectomy in mice. PloS one. 2014;9(1):e83987. doi: 10.1371/journal.pone.0083987.
McDaniel DK, Eden K, Ringel VM, Allen I. Emerging roles for noncanonical NF-κB signaling in the modulation of inflammatory bowel disease pathobiology. Inflamm Bowel Dis. 2016;22(9):2265-79. doi: 10.1097/MIB.0000000000000858.
Affò S, Dominguez M, Lozano JJ, Sancho-Bru P, Rodrigo D, Morales O, et al. Transcriptome analysis identifies TNF superfamily receptors as potential therapeutic targets in alcoholic hepatitis. Gut. 2013;62(3):452-60. doi: 10.1136/gutjnl-2011-301146.
Zakeri N, Mirdamadi ES, Kalhori D, Solati-Hashjin M. Signaling molecules orchestrating liver regenerative medicine. J Tissue Eng Regen Med. 2020;14(12):1715-37. doi: 10.1002/term.3135.
Suppli MP, Rigbolt KT, Veidal SS, Heebøll S, Eriksen PL, Demant M, et al. Hepatic transcriptome signatures in patients with varying degrees of nonalcoholic fatty liver disease compared with healthy normal-weight individuals. Am J Physiol Gastrointest Liver Physiol. 2019;316(4):G462-G72. doi: 10.1152/ajpgi.00358.2018.
Heyens LJM, Busschots D, Koek GH, Robaeys G, Francque S. Liver Fibrosis in Non-alcoholic Fatty Liver Disease: From Liver Biopsy to Non-invasive Biomarkers in Diagnosis and Treatment. Front Med. 2021;8:615978. doi: 10.3389/fmed.2021.615978.
Xie Y, Chen L, Xu Z, Li C, Ni Y, Hou M, et al. Predictive Modeling of MAFLD Based on Hsp90α and the Therapeutic Application of Teprenone in a Diet-Induced Mouse Model. Front Endocrinol (Lausanne). 2021;12:743202. doi: 10.3389/fendo.2021.743202.
Brilakis L, Theofilogiannakou E, Lykoudis PM. Current remarks and future directions on the interactions between metabolic dysfunction-associated fatty liver disease and COVID-19. World J Gastroenterol. 2024;30(11):1480-1487. doi: 10.3748/wjg.v30.i11.1480.
Roncero C, Suarez Causado A, Almalé L, Barabash A, Torres A, Rubio M, et al. Expression of hepatocellular carcinoma-related genes is increased from the early stages of non-alcoholic fatty liver disease. Surg Obes Relat Dis. 2016;12(7):S205. doi: 10.1016/j.soard.2016.08.358.
Sánchez A, Suarez-Causado A, Caballero D, Roncero C, GarcíaÁlvaro M, Fernández M, et al. Characterization of the Mettriggered migratory and invasive response in liver progenitor oval cells. J Hepatol. 2013;58:S127-S8. doi: 10.1016/S0168-8278(13)60305-0.
Suárez-Causado A, Caballero-Díaz D, Bertrán E, Roncero C, Addante A, García-Álvaro M, et al. HGF/c-Met signaling promotes liver progenitor cell migration and invasion by an epithelial–mesenchymal transition-independent, phosphatidyl inositol-3 kinase-dependent pathway in an in vitro model. Biochim Biophys Acta Mol Cell Res. 2015;1853(10 Pt A):2453-63. doi: 10.1016/j.bbamcr.2015.05.017.
Lambis A L, Solana T JB, Gastelbondo P B, Romero S D, Garrido C D, Puello R W, et al. Risk Factors Associated with Nonalcoholic Fatty Liver Disease in a Colombian Caribbean Population. Rev Colomb Gastroenterol. 2016;31(2):89-95.
Pérez JG, Lambis AL, Puello RW, Solana TJ, Suarez CA. Evidence of fibrogenesis in non-alcoholic steatoticliver of patients with components of the metabolic syndrome. Duazary. 2021;18(2):141-152. doi: 10.21676/2389783X.4077.
Poniachik J, Mancilla C, Contreras J, Csendes A, Smok G, Cavada G, et al. Obesity: risk factor for steatohepatitis and hepatic fibrosis. Rev Med Chil. 2002;130(7):731-6.
Allaire M, Gilgenkrantz H. The impact of steatosis on liver regeneration. Horm Mol Biol Clin Investig. 2018;41(1):/j/hmbci.2020.41.issue-1/hmbci-2018-0050/hmbci-2018-0050.xml.doi: 10.1515/hmbci-2018-0050.
Haldrup D, Heebøll S, Thomsen KL, Andersen, KJ, Meier M, Mortensen FV, et al. Preserved liver regeneration capacity after partial hepatectomy in rats with non-alcoholic steatohepatitis. World J Hepatol. 2018;10(1):8-21. doi: 10.4254/wjh.v10.i1.8.
Wheeler MC, Gekakis N. Hsp90 modulates PPARγ activity in a mouse model of nonalcoholic fatty liver disease. J Lipid Res. 2014;55(8):1702-10. doi: 10.1194/jlr.M048918.
Hu C, Wu Z, Li L. Mesenchymal stromal cells promote liver regeneration through regulation of immune cells. Int J Biol Sci. 2020;16(5):893-903. doi: 10.7150/ijbs.39725.
Matsumoto Y, Yoshizumi T, Toshima T, Takeishi K, Fukuhara T, Itoh S, et al. Ectopic localization of autophagosome in fatty liver is a key factor for liver regeneration. Organogenesis. 2019;15(1):24-34. doi: 10.1080/15476278.2019.1633872.
Bird TG, Lorenzini S, Forbes SJ. Activation of stem cells in hepatic diseases. Cell Tissue Res. 2008;331(1):283-300. doi: 10.1007/s00441-007-0542-z.
Wilhelm A, Shepherd EL, Amatucci A, Munir M, Reynolds G, Humphreys E, et al. Interaction of TWEAK with Fn14 leads to the progression of fibrotic liver disease by directly modulating hepatic stellate cell proliferation. J Pathol. 2016;239(1):109-21. doi: 10.1002/path.4707.
Abu Rmilah A, Zhou W, Nelson E, Lin L, Amiot B, Nyberg SL. Understanding the marvels behind liver regeneration. Wiley Interdiscip Rev Dev Biol. 2019;8(3):e340. doi: 10.1002/wdev.340.
Karaca G, Xie G, Moylan C, Swiderska-Syn M, Guy CD, Krüger L, et al. Role of Fn14 in acute alcoholic steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2015;308(4):G325-34. doi: 10.1152/ajpgi.00429.2013.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Daniel Romero-Suárez, José Belisario Solana-Tinoco, María Cecilia García-Espiñeira, Lina Lambis-Anaya, Amileth Suarez-Causado
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Revista de Gastroenterología del Perú by Sociedad Peruana de Gastroenterología del Perú is licensed under a Licencia Creative Commons Atribución 4.0 Internacional..
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).