White light imaging versus artificial intelligence-assisted white light imaging for colorectal neoplasia detection: a randomised trial
DOI:
https://doi.org/10.47892/rgp.2025.454.2065Palabras clave:
Colonoscopy, Polyps, Adenomas, Artificial IntelligenceResumen
Introduction: Adenoma detection rate (ADR) and sessile serrated lesion (SSL) detection rate (SDR) are crucial quality indicators for colonoscopy, as their improvement contributes to effective prevention of colorectal cancer. Artificial intelligence (AI) has been shown to significantly increase ADR. This study compared white light imaging (WLI) versus AI-assisted WLI for neoplasia detection. Materials and methods: This was a prospective, randomised trial of screening, surveillance, and symptomatic patients. Our primary objective was to evaluate ADR. Secondary objectives included SDR, mean number of adenomas per patient (MAP), neoplasia detection rate (NDR), advanced ADR (AADR), and colonoscope withdrawal time. Results: A total of 621 adenomas were diagnosed in 711 patients, with 310 adenomas in the WLI group and 311 adenomas in the WLI+AI group (p=0.65). Eighty-three SSLs and two intramucosal carcinomas were also detected, totalling 706 neoplasms. ADR was 45.9% in the WLI group and 50.8% in the WLI+AI group (p=0.20). ADR was 54.4% for screening, 49.0% for surveillance, and 40.0% for symptomatic patients (p=0.01). Marginal significance was observed in the WLI+AI group for screening patients (61.5% vs. 49.2%, p=0.06). SDR was 9.0% for both groups. MAP (0.9 vs. 0.9, p=0.34), NDR (51.0% vs. 56.8%, p=0.13), and AADR (8.4% vs. 7.6%, p=0.78) did not differ significantly between the groups. Withdrawal time was similar for the WLI (12.4±5.1 min) and WLI+AI (12.2±4.1 min) groups (p=0.32). Conclusions: AI-assisted colonoscopy demonstrated high ADR and NDR. While without statistical relevance overall, marginal significance was observed for screening patients.
Descargas
Métricas
Citas
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492.
Brenner H, Stock C, Hoffmeister M. Effect of screening sigmoidoscopy and screening colonoscopy on colorectal cancer incidence and mortality: systematic review and meta-analysis of randomised controlled trials and observational studies. BMJ. 2014;348:g2467. doi: 10.1136/bmj.g2467.
Rutter MD, Beintaris I, Valori R, Chiu HM, Corley DA, Cuatrecasas M, et al. World Endoscopy Organization Consensus Statements on Post-Colonoscopy and Post-Imaging Colorectal Cancer. Gastroenterology. 2018;155(3):909-925.e3. doi: 10.1053/j.gastro.2018.05.038.
Baxter NN, Sutradhar R, Forbes SS, Paszat LF, Saskin R, Rabeneck L. Analysis of administrative data finds endoscopist quality measures associated with postcolonoscopy colorectal cancer. Gastroenterology. 2011;140(1):65-72. doi: 10.1053/j. gastro.2010.09.006.
Rex DK, Anderson JC, Butterly LF, Day LW, Dominitz JA, Kaltenbach T, et al. Quality indicators for colonoscopy. Gastrointest Endosc. 2024;100(3):352-381. doi: 10.1016/j.gie.2024.04.2905.
Corley DA, Levin TR, Doubeni CA. Adenoma detection rate and risk of colorectal cancer and death. N Engl J Med. 2014;370(26):2541. doi: 10.1056/NEJMc1405329.
Soleymanjahi S, Huebner J, Elmansy L, Rajashekar N, Lüdtke N, Paracha R, et al. Artificial Intelligence-Assisted Colonoscopy for Polyp Detection: A Systematic Review and Meta-analysis. Ann Intern Med. 2024;177(12):1652-1663. doi: 10.7326/ANNALS-24-00981.
Makar J, Abdelmalak J, Con D, Hafeez B, Garg M. Use of artificial intelligence improves colonoscopy performance in adenoma detection: a systematic review and meta-analysis. Gastrointest Endosc. 2025;101(1):68-81.e8. doi:10.1016/j. gie.2024.08.033.
Shah S, Park N, Chehade NEH, Chahine A, Monachese M, Tiritilli A, et al. Effect of computer-aided colonoscopy on adenoma miss rates and polyp detection: A systematic review and meta-analysis. J Gastroenterol Hepatol. 2023;38(2):162-176. doi: 10.1111/jgh.16059.
Hamilton SR, Aaltonen LA, editors: World Health Organization classification of tumours. Pathology and genetics of tumours of the digestive system. Lyon: IARC Press: 2000. p. 104-19.
Messmann H, Bisschops R, Antonelli G, Libânio D, Sinonquel P, Abdelrahim M, et al. Expected value of artificial intelligence in gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) Position Statement. Endoscopy. 2022;54(12):1211-1231. doi: 10.1055/a-1950-5694.
Biscaglia G, Cocomazzi F, Gentile M, Loconte I, Mileti A, Paolillo R, et al. Real-time, computer-aided, detection-assisted colonoscopy eliminates differences in adenoma detection rate between trainee and experienced endoscopists. Endosc Int Open. 2022;10(5):E616-E621. doi: 10.1055/a-1783-9678.
Spada C, Salvi D, Ferrari C, Hassan C, Barbaro F, Belluardo N, et al. A comprehensive RCT in screening, surveillance, and diagnostic AI-assisted colonoscopies (ACCENDO-Colo study). Dig Liver Dis. 2025;57(3):762-769. doi: 10.1016/j.dld.2024.12.023.
Lee MCM, Parker CH, Liu LWC, Farahvash A, Jeyalingam T. Impact of study design on adenoma detection in the evaluation of artificial intelligence-aided colonoscopy: a systematic review and meta-analysis. Gastrointest Endosc. 2024;99(5):676- 687.e16. doi: 10.1016/j.gie.2024.01.021.
Jin XF, Ma HY, Shi JW, Cai JT. Efficacy of artificial intelligence in reducing miss rates of GI adenomas, polyps, and sessile serrated lesions: a meta-analysis of randomized controlled trials. Gastrointest Endosc. 2024;99(5):667-675.e1. doi: 10.1016/j. gie.2024.01.004.
Maida M, Marasco G, Maas MHJ, Ramai D, Spadaccini M, Sinagra E, et al. Effectiveness of artificial intelligence assisted colonoscopy on adenoma and polyp miss rate: A meta-analysis of tandem RCTs. Dig Liver Dis. 2025;57(1):169-175. doi: 10.1016/j.dld.2024.09.003.
Spadaccini M, Hassan C, Mori Y, Halvorsen N, Gimeno-García AZ, Nakashima H, et al. Artificial intelligence and colorectal neoplasia detection performances in patients with positive fecal immunochemical test: Meta-analysis and systematic review. Dig Endosc. 2025;37(8):815-823. doi: 10.1111/den.15034.
Lagström RMB, Bräuner KB, Bielik J, Rosen AW, Crone JG, Gögenur I, et al. Improvement in adenoma detection rate by artificial intelligence-assisted colonoscopy: Multicenter quasi-randomized controlled trial. Endosc Int Open. 2025;13:a25215169. doi: 10.1055/a-2521-5169.
Gangwani MK, Haghbin H, Ishtiaq R, Hasan F, Dillard J, Jaber F, et al. Single Versus Second Observer vs Artificial Intelligence to Increase the ADENOMA Detection Rate of ColonoscopyA Network Analysis. Dig Dis Sci. 2024;69(4):1380-1388. doi: 10.1007/s10620-024-08341-9.
Wu J, Zhao SB, Wang SL, Fang J, Xia T, Su XJ, et al. Comparison of efficacy of colonoscopy between the morning and afternoon: A systematic review and meta-analysis. Dig Liver Dis. 2018;50(7):661-667. doi: 10.1016/j.dld.2018.03.035.
Richter R, Bruns J, Obst W, Keitel-Anselmino V, Weigt J. Influence of Artificial Intelligence on the Adenoma Detection Rate throughout the Day. Dig Dis. 2023;41(4):615-619. doi: 10.1159/000528163.
Sultan S, Shung DL, Kolb JM, Foroutan F, Hassan C, Kahi CJ, et al. AGA Living Clinical Practice Guideline on ComputerAided Detection-Assisted Colonoscopy. Gastroenterology. 2025;168(4):691-700. doi: 10.1053/j.gastro.2025.01.002.
Areia M, Mori Y, Correale L, Repici A, Bretthauer M, Sharma P, et al. Cost-effectiveness of artificial intelligence for screening colonoscopy: a modelling study. Lancet Digit Health. 2022;4(6):e436-e444. doi: 10.1016/S2589-7500(22)00042-5.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Carlos Eduardo Oliveira dos Santos, Cadman Leggett, Prateek Sharma, Gabriel Malaman dos Santos, Ivan David Arciniegas Sanmartin, Júlio Carlos Pereira-Lima

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Revista de Gastroenterología del Perú by Sociedad Peruana de Gastroenterología del Perú is licensed under a Licencia Creative Commons Atribución 4.0 Internacional..
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).








2022